

Comunicação CC-Link IE Field-Basic com inversores E800-EPA/EPB, A800-E e F800-E

Rev. A

Revisões

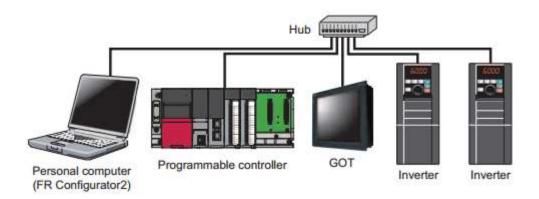
Data da Revisão	Nome do Arquivo	Revisão
Dez/2020 (A)	DAP-iQF-10_CC-Link IEF Basic FX5 EAF800-E1	Primeira edição

1. Objetivo

O objetivo desse documento é explicar como configurar a comunicação via CC-Link IE Field Basic entre o PLC FX5 e inversores das séries FR-E800-EPA/EPB, FR-A800-E1 ou F800-E1 para operações básicas de envio de comandos de partida avante, partida reversa e setpoint de velocidade, além do recebimento de informações de velocidade atual do motor e corrente consumida pelo motor.

Para baixar os programas de exemplo, por favor, entre em contato com a MEB: cat@mitsubishielectric.com.br ou (11) 4689-3000, opção 2.

2. Software


- GX Works3
- FR-Configurator2

3. Hardware

- CPU FX5U
- Inversor FR-A800/F800-E /FR-E800-EPA/EPB

4. Configuração do Inversor

Os inversores Mitsubishi da série FR-800-E (Tanto o A800, quanto o F800 e o E800) possuem em sua porta Ethernet nativa o protocolo CC-Link IE Field Basic, podendo ser conectado facilmente a uma rede Ethernet via hub ou diretamente a outro dispositivo (ponto a ponto), usando um cabo CAT 5 ou superior comum.

A seguir, será explicado como parametrizar o inversor de forma básica e direta visando dar ao inversor comandos básicos e receber informações básicas. Para tanto, no inversor, altere os seguintes parâmetros:

Pr.	Nome	Valor	Detalhes
79	Operation mode selection	0	Comutação entre modos PU, Externo e
			NET habilitados
340	Communicaion operation command source	10	Comunicação habilitada, permitindo troca entre NET e PU
342	Communication EPROM write	0 ou 3*4	Em 3, a escrita de parâmetros será
	selection		apenas na RAM
544	CC-Link extended setting	18	Octuple setting CC-Link Ver.2
1425	Ethernet communication station	>=1	Número de estação do inversor em sua
	number		rede
1427	Ethernet function selection 1	61450	Seleção do protocolo CC-Link IEF Basic
1428	Ethernet function selection 2	9999	Desabilitada
1429	Ethernet function selection 3	9999	Desabilitada
1430	Ethernet function selection 4	9999	Desabilitada (apenas E800)
1431	Ethernet signal loss detection	3	Inversor irá parar em caso de queda de
	function selection		rede
1434	Ethernet IP address 1	192	Configuração do IP do Inversor na rede *1
1435	Ethernet IP address 2	168	Configuração do IP do Inversor na rede *1
1436	Ethernet IP address 3	3	Configuração do IP do Inversor na rede *1
1437	Ethernet IP address 4	21/22/23/24*2	Configuração do IP do Inversor na rede *1
1438	Subnet mask 1	255	Configuração da Máscara de Sub-rede do Inversor na rede *1
1439	Subnet mask 2	255	Configuração da Máscara de Sub-rede do Inversor na rede *1
1440	Subnet mask 3	255	Configuração da Máscara de Sub-rede do Inversor na rede *1
1441	Subnet mask 4	0	Configuração da Máscara de Sub-rede do Inversor na rede *1
1449	Ethernet command source selection IP address 1	192	Configuração IP do CLP *1*3
1450	Ethernet command source selection IP address 3	168	Configuração IP do CLP *1*3
1451	Ethernet command source selection IP address 3	3	Configuração IP do CLP *1*3
1452	Ethernet command source selection IP address 4	250	Configuração IP do CLP *1*3
1453	Ethernet command source selection IP address 3 range specification	9999	Configuração range de IP de comando *1*3
1454	Ethernet command source selection IP address 4 range specification	9999	Configuração range de IP de comando *1*3

^{*1-} Configuração referente aos programas exemplo. Deve ser adequado à realidade de sua aplicação

AO TERMINAR A PARAMETRIZAÇÃO POR FAVOR, DESLIGUE E LIGUE O INVERSOR NOVAMENTE.

^{*2- 21-} Inversor st1 do programa exemplo,

²²⁻ Inversor st2 do programa exemplo

²³⁻ Inversor st3 do programa exemplo 24- Inversor st4 do programa exemplo

^{*3-} Caso o seu IP esteja fora do range de configuração, a comunicação **não funcionará**

^{*4-} Use "3" apenas se for usar a alteração de rampas ou outros parâmetros via rede. Caso não vá, use em 0, ou os parâmetros alterados via FR-Configurator 2 também não serão salvos na EPROM.

Obs.: Esses parâmetros serão configurados automaticamente se os programas exemplos dos inversores forem carregados via FR Configurator2 usando o arquivo INVn_CClinklEBasic_FB_UDT_v1.frc2.

No caso do inversor, cada RX/RY/RWr/RWw tem uma função associada ao funcionamento do inversor, onde n é o valor de endereço de I/O da estação.

Sinais de Saída

Comandos do Inversor (RY)										
No. do dispositivo	Sinal	No. do dispositivo	Sinal							
RY <i>n</i> 0	Comando de rotação forward	RY (n+1)0								
RYn1	Comando de rotação reverse	RY(n+1)1								
RY <i>n</i> 2	Comando de operação <i>high speed</i> (terminal RH)	RY (n+1)2								
RYn3	Comando de operação <i>middle speed</i> (terminal RM)	RY(n+1)3	Dan and da							
RY <i>n4</i>	Comando de operação <i>low speed</i> (terminal RL)	RY(n+1)4	Reservado							
RY <i>n5</i>	Comando de operação JOG (terminal JOG)	RY (n+1)5								
RY <i>n</i> 6	Seleção de função secundária (terminal RT)	RY (n+1)6								
RY <i>n7</i>	Seleção de entrada de corrente (terminal AU)	RY(n+1)7								
RY <i>n</i> 8	Restart automático após falha instantânea de alimentação (terminal CS)	RY (n+1)8	Não utilizado							
RY <i>n</i> 9	Interrupção da saída (MRS)	RY (n+1)9	Não utilizado							
RY <i>nA</i>	Seleção de retenção de início (terminal STOP)	RY (n+1)A	Flag de requisição de reset de erro							
RY <i>nB</i>	Reset (terminal RES)	RY (n+1)B								
RY <i>n</i> C	Comando monitor	RY (n+1)C								
RYnD	Comando de configuração da frequencia/torque (RAM)	RY(n+1)D	Reservado							
RY <i>nE</i>	Comando de configuração da frequencia/torque (RAM, EEPROM)	RY(n+1)E								
RY <i>nF</i>	Requisição de execução do código de instrução	RY(n+1)F								

Sinais de entrada

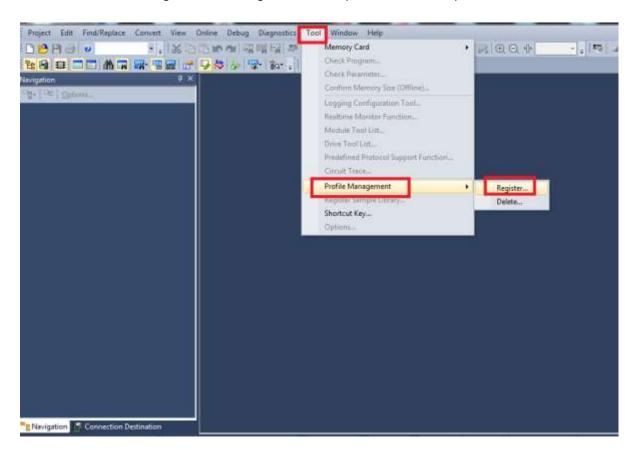
	Status do inve	rsor (RX)			
No. do dispositivo	Sinal	No. do dispositivo	Sinal		
RXn0	Movimento forward	RX(n+1)0			
RXn1	Movimento reverse	RX(n+1)1			
RXn2	Em movimento (RUN)	RX(n+1)2			
RXn3	Frequencia acima (SU)	RX(n+1)3	Reservado		
RXn4	Sobrecarga (OL)	RX(n+1)4	Reservado		
RXn5	Reservado	RX(n+1)5			
RXn6	Deteção de frequencia	RX(n+1)6			
RXn7	Falha (terminal ABC1)	RX(n+1)7			
RXn8	(terminal ABC2)	RX(n+1)8	Não utilizado		
RXn9	(função DO0)	RX(n+1)9	TNAU UIIIIZAUU		
RXnA	(função DO1)	RX(n+1)A	Flag de erro		
RXnB	(função DO2)	RX(n+1)B	Estação remota pronta		
RXnC	Monitoramento	RX(n+1)C			
RXnD	Comando de configuração da frequencia (RAM)	RX(n+1)D	Dan and da		
RXnE	Comando de configuração da frequencia (EEPROM)	RX(n+1)E	Reservado		
RXnF	Execução da instrução completada	RX(n+1)F			

Registrador remoto

Coman	dos Númericos do l	nversor (RWw)	Statu	s Númericos do Inversor (RWr)		
No. do	Desc	rição	No. do	Descrição		
dispositivo	Upper 8 bits	Lower 8bits	dispositivo	Descrição		
RWw(n)	Código do monitor 2	Código do monitor 1	RWr(n)	Valor do primeiro monitor		
RWw(n+1)	Configuração do cor (incremento 0	nando de frequencia .01Hz)/torque	RWr(n+1)	Valor do segundo monitor		
RWw(n+2)	H00 (arbitrário)	Código da instrução	RWr(n+2)	Código de resposta		
RWw(n+3)	Escrita d	de dados	RWr(n+3)	Leitura de dados		

5. Configuração do CLP FX5U

O CLP FX5U possui uma porta Ethernet nativa, que serve para programar a CPU e para estabelecer conexão com redes e equipamentos externos. É por meio dela que nos conectaremos à rede CC-Link IE Field Basic.

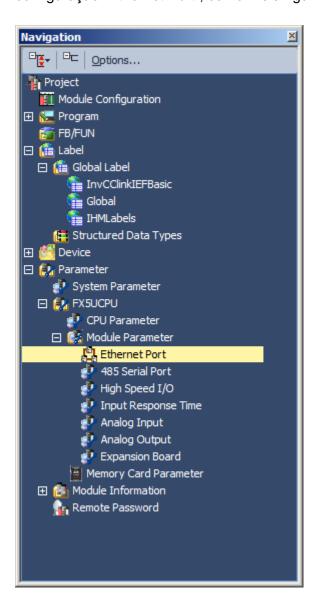

Conecte um cabo CAT 5e (ou superior) à porta Ethernet da CPU e conecte a outra ponta do cabo a um HUB, switch ou roteador de sua escolha. Conecte também os inversores ao mesmo equipamento de gerenciamento de rede.

Use o software GX Works3 para efetuar as seguintes configurações.

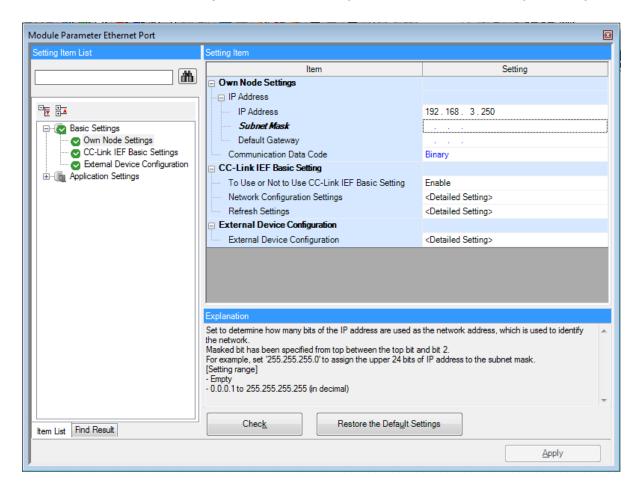
Obs.: Carregando o programa de exemplo **PLCIQF_CClinkIEBasic_FB_UDT_v1.gx3** na CPU FX5U, as configurações seguintes serão automaticamente carregadas.

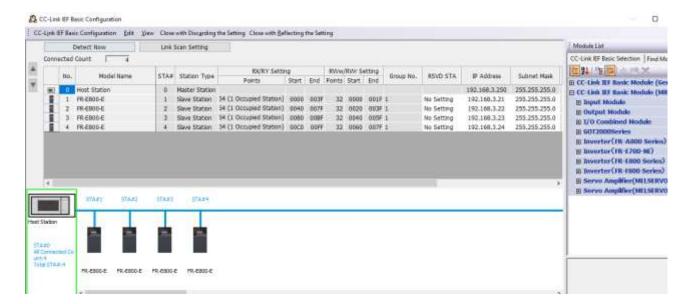
Primeiramente é necessário registrar o *Profile* do inversor para que o FX5 consiga identificar os inversores na rede, para baixar o arquivo necessário, entre em contato com a Mitsubishi Electric Brasil.

Com o arquivo do *Profile* baixado, abra o GX Works3 sem nenhum projeto criado vá em "Tool" > "Profile Management" > "Register", e indique o local do arquivo.



Uma vez indicado o *Profile* será instalado e estará pronto para usar.


Depois do projeto criado e *Profile* instalado, abra um novo projeto e vá até o menu de configuração "*Ethernet Port*", conforme a figura a seguir:



Na janela de configuração, habilite a função CC-Link IEF Basic no menu "To use or not to use CC-link IEF Basic Setting" selecionando a opção "enable", conforme a figura a seguir;

Após isso, clique em "detailed settings" do item, "Network Configuration Settings", para configurar as estações conectadas à CPU.

Clique no botão "Detect Now" caso o inversor esteja configurado e conectado na rede, para encontrar as estações que estão conectadas à rede. Caso não esteja, selecione o drive na lista da lateral direita e configure manualmente o IP. Depois de detectado ou configurado manualmente, clique em "Close with Reflecting Setting" para salvar a configuração.

Na tela anterior clique em "detailed settings" do item "Refresh Setting" para configurar os registradores do CLP que vão comandar o CLP.

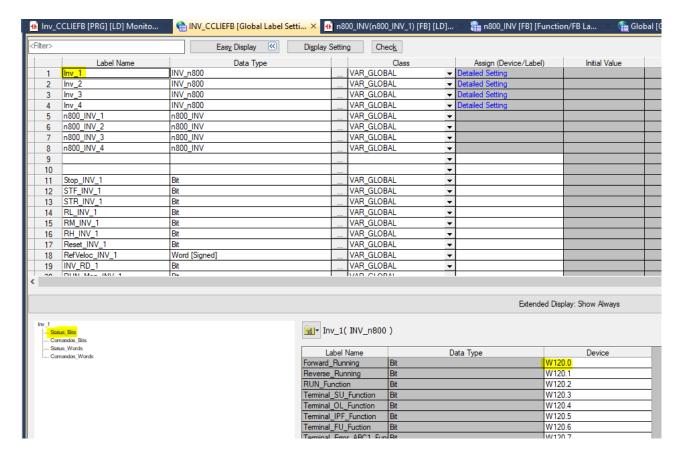
Link Side					CPU Side							
Device Name	Points	Start	End		Target		Device Nam	е	Points	Start	End	
RX	256	00000	000FF	+	Specify Devi	~	W	~	16	00120	0012F	
RY	256	00000	000FF	+	Specify Devi	~	W	~	16	00130	0013F	
RWr	128	00000	0007F	+	Specify Devi	~	W	~	128	00140	001BF	
RWw	128	00000	0007F	+	Specify Devi	~	W	~	128	001C0	0023F	

Lembre-se de clicar em "Apply" após concluir essas configurações.

Dessa forma, teremos a seguinte configuração pronta em nosso programa de exemplo;

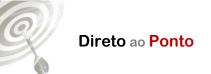
	Bits de Leitura (RX)											
Inver	Inversor 1 Inversor 2 Inversor 3 Inversor 4											
De	Até	De	Até	De	Até	De	Até					
W120.0	W120.0 W123.F W124.0 W127.F W128.0 W12B.F W12C.0 W12F.F											

	Bits de Escrita (RY)											
Inver	Inversor 1 Inversor 2 Inversor 3 Inversor 4											
De	De Até De Até De Até											
W130.0	W130.0 W133.F W134.0 W137.F W138.0 W13B.F W13C.0 W13F.F											


	Palavras de Leitura (RWr)											
Inversor 1 Inversor 2 Inversor 3 Inversor 4												
De	De Até De Até De Até											
W140	W140 W15F W160 W17F W180 W19F W1A0 W1BF											

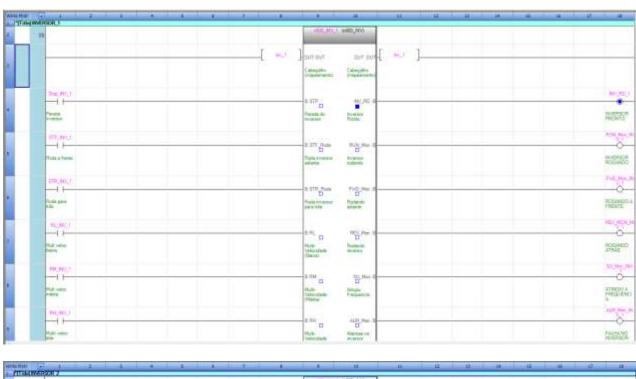
	Palavras de Escrita (RWw)												
Inversor 1 Inversor 2 Inversor 3 Inversor 4													
De	De Até De Até De Até												
W1C0													

As mesmas configurações descritas na tabela acima devem ser feitas nos **Labels "Inv_n"**, em cada tabela de Label de cada inversor. Na figura abaixo, podemos ver que, para o Label Inv_1, as variáveis RX Bits começam a partir do W120.0, conforme a tabela acima nos mostrou.



Essa tabela irá mudar de acordo com a necessidade de o usuário incrementar eixos. Se for necessário reduzir o número de eixos, use os exemplos prontos para menos eixos.

Se caso for utilizar menos inversores, remova as rotinas referentes aos inversores não usados, assim como os labels "Inv-n" e "n800_INV_n" e faça um "Rebuild-All" (Alt+Shift+F4)


A seguir, será ilustrado o conteúdo do programa de exemplo **PLCIQF_CClinklEBasic_FB_UDT_v1.gx3**.

6. Usando o programa de exemplo (PLCIQF_CClinklEBasic_FB_UDT_v1.gx3)

O programa de exemplo já vem com uma rotina criada para 4 inversores. As subrotinas são basicamente iguais, mudando apenas o número do inversor _1, _2, _3 e _4.

O usuário deverá criar a lógica de sua máquina **adicionando uma ou mais novas rotinas**, **com os nomes desejados** e manter no programa as rotinas criadas pela MEB para cada inversor. Dessa forma, o usuário poderá usar em seu programa as variáveis de entrada e saída dos Function Blocks de cada inversor em sua lógica para executar o controle dos drives.


As variáveis disponíveis para uso do usuário são as seguintes:

Labels de comando	Formato	Descrição
Stop_INV_n	Bit	Parada Inversor
STF_INV_n	Bit	Roda a frente
STR_INV_n	Bit	Roda para trás
RL_INV_n	Bit	Mult veloc baixa
RM_INV_n	Bit	Mult veloc média
RH_INV_n	Bit	Multi veloc alta
Reset_INV_n	Bit	Reset de erros
RefVeloc_INV_n	Word [Signed]	Referência de velocidade
Labels de Monitoramento	Formato	Descrição
INV_RD_n	Bit	INVERSOR PRONTO
RUN_Mon_INV_n	Bit	INVERSOR RODANDO
FWD_Mon_INV_n	Bit	RODANDO A FRENTE
REV_MON_INV_n	Bit	RODANDO ATRÁS
ALM_Mon_INV_n	Bit	FALHA NO INVERSOR
SU_Mon_INV_n	Bit	ATINGIU A FREQUENCIA
VelAtual_INV_n	Word [Signed]	VELOCIDADE ATUAL
CorrenteAtual_INV_n	Word [Signed]	CORRENTE ATUAL
VoltAtual_INV_n	Word [Signed]	TENSÃO ATUAL
ErroNO_INV_n	Word [Signed]	NUMÉRO DO ERRO

Obs.: As variáveis com comentários escritos em letras maiúsculas são apenas para monitoramento.

Se o usuário deseja partir o inversor 1, por exemplo, basta, em sua lógica que foi adicionada, ligar uma bobina ou *setar* a variável **STF_INV_1** e escrever a frequência na variável **RefVeloc_INV_1**

Se o usuário deseja partir o inversor 2, por exemplo, basta, em sua lógica que foi adicionada, ligar uma bobina ou *setar* a variável **STF_INV_2** e escrever a frequência na variável **RefVeloc_INV_2**

7. Usar alteração de rampas de aceleração e desaceleração

Para usar a função de troca de tempo de aceleração e de desaceleração, abra o arquivo "Local Label" dentro do FB/FUN -> FBFILE -> n800_INV

Troque a classe dos labels EscrRampas (Bit), AccTemp (Word [Signed]), DecTemp (Word [Signed]) de VAR para VAR_INPUT

10	EscrRampas	Bit	 VAR	▼	,	Escreve as rampas
11	AccTemp	Word [Signed]	 VAR	-	7	Tempo Aceleração
12	DecTemp	Word [Signed]	 VAR	▼	-	Tempo Desaceleração

Dessa forma, serão adicionados 3 pinos de entrada no function block. Crie variáveis nos mesmos formatos desses Labels e conecte-as a esses novos pinos.

Para escrever no inversor 1 uma rampa de 10 segundos por exemplo, crie uma variável na entrada AccTemp do Function Block do inversor 1 e escreva nela o valor 100 (10.0 seg).

Após isso crie um bit e conecte-o ao pino EscrRampas. Ligue e desligue o bit que foi criado.

Faça isso sempre para alterar as rampas de aceleração e desaceleração.

Caso não use essa função, mantenha as variáveis labels EscrRampas (Bit), AccTemp (Word [Signed]), DecTemp (Word [Signed]) como VAR.