

Comunicação CC-Link IE Field-Basic com Servo JE-C N°. DAP-iQF-04

Rev. A

Revisões

Data da Revisão	Nome do Arquivo	Revisão
Dez/2018 (A)	DAP-iQF-04_CTRL JEC CCLINK BASIC	Primeira edição

1. OBJETIVO

O objetivo desse documento é explicar como controlar o Servo JE-C para via CC-Link ie Field Basic, com o FX5

2. CONCEITO

O sevo MR-JE-C possui uma porta ethernet integrada que serve para receber comandos através de diferentes redes baseadas em Ethernet, como CC-Link IE field Basic. No nosso exemplo iremos controlar o servo por essa rede

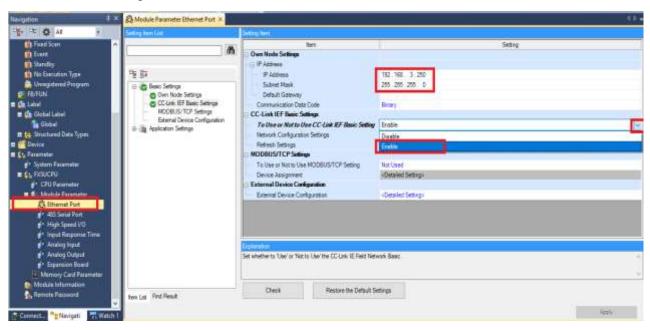
3. DOCUMENTAÇÃO PARA REFERÊNCIA

- 1. Manual Usuário JE-C
- 2. Manual CC-Link IE Filed Basic JE-C
- 3. Manual Profile Mode JE-C

4. HARDWARE/SOFTWARE

- 1 PC com SO Windows XP, 7 ou 10 com o software GxWorks-3 instalado;
- 1 Servo JE-C
- 1 FX5U

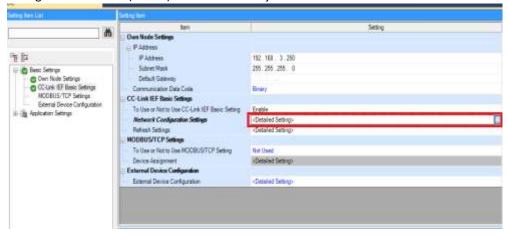
5. CONFIGURAR A COMUNICAÇÃO NO SERVO

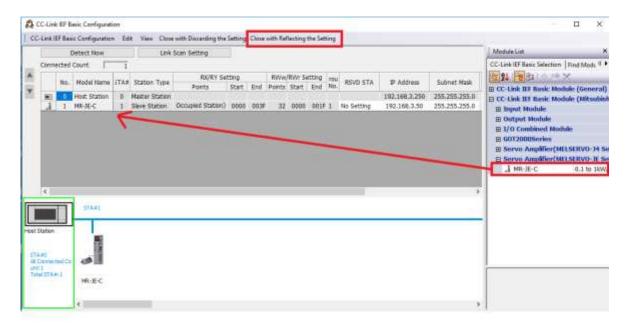

É necessário configurar o servo para trabalhar corretamente, nesse exemplo utilizaremos o servo com IP 192.168.3.50, para mais detalhes de configuração do servo consultar o **DAP**-

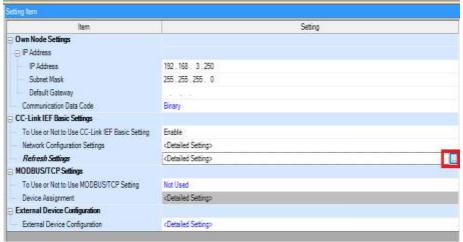
SV05(A)_PAR_JEC_ETHERNET

6. CONFIGURAR PLC FX5U

Para configurar o CLP, a primeira coisa, é configurar os parâmetros da rede CC-link Basic, basta seguir os seguintes passos:

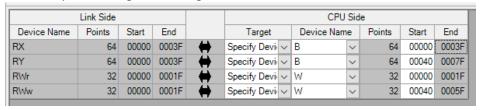

1. Configurar o IP do CLP e habilitar o CC-Link IE Field Basic




2. Configure os escravos (servos) da sua comunicação

Arraste o servo JE-C do menu, configure o seu endereço IP e em seguida clique em Close with reflecting the setting para confirmar a configuração:

3. Configure a área de memória utilizada pela rede



Aqui devemos lembrar que quatro tipos de dados são trocados na comunicação RX, RY, RWr, RWw.

- RX, são bits de leitura do CLP, onde ele pode ler status e confirmações.
- RY, são bits de escrita do CLP, onde ele pode enviar comandos.
- RWr, são words de leitura do CLP, onde pode ler monitores numéricos.
- RWw, são words de escrita do CLP, onde ele pode enviar comandos numéricos.

Os RX e RY, podem ser atribuídos a qualquer memória de bits, como X, Y, B, M etc... Os RWr e RWw, podem ser aribuidos a qualquer memória de words como D, W, R etc...

Nesse exemplo foi configurado da seguinte forma:

Ou seja,

- RX de B0 a B3F
- RY de B40 a B7F
- RWr de W0 a W1F
- RWw de W40 a W5F

Feito isso, toda nossa parte de configuração da Rede está completa, agora basta um pouco de programação para enviar comandos para o servo.

7. PROGRAMAÇÃO CLP

Depois que as áreas de memória foram configuradas basta seguir as tabelas de comandos encontradas nos manuais para comandar o servo

As tabelas são:

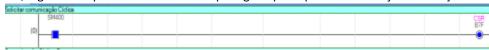
: A	Master station → Servo amplifie	r (RYn)		
(Note) Device No.	Device	Symbol	Remark	
RYn0 to RY (n + 3) E	Not used			
RY (n + 3) F	Cyclic communication ready command	CSR		

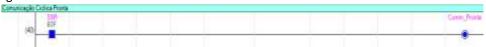
S	Servo amplifier → Master station	n (RXn)		
(Note) Device No.	Device	Symbol	Remark	
RXn0 to RX (n + 3) E	Not used			
RX (n + 3) F	Cyclic communication ready	SSR		

......

N	laster stat	ton → Servo amplifier	(RWwn)		Servo amp	ilfier → Master station	(RWm)
(Note) Device No.	Index	Devi	ce	(Note) Device No.	Index	Dev	loe
RWwn00	6060	Control mode	Modes of operation	RWm00	6061	Control mode display	Modes of operation display
RWwn01	6040	Control command	Controlword	RWm01			
RWwn02	2D01	Control Input 1	Control DI 1	RWm02	6041	Control status	Statusword
RWwn03	2D02	Control Input 2	Control DI 2	RWm03	6064	Current position	Position actual
RWwn04	2D03	Control Input 3	Control DI 3	RWm04	0004	(command unit)	value
RWwn05	607A	Position command	Target position	RWm05	606C	Current speed	Velocity actual
RWwn06	00/1	(pp)	raiget position	RWm06	0000	Current opeeu	value
RWwn07	60FF	Speed command	Target velocity	RWm07	60F4	Droop pulses	Following error
RWwn08	OULL	(pv)	raiget velocity	RWm08	00F4	Dioop puises	actual value
RWwn09 RWwn0A	2D20	Speed limit value (tq)	Velocity limit value	RWm09	6077	Current torque	Torque actual value
		Torque command		RWm0A	2D11	Control output 1	Status DO 1
RWwn0B	6071	(tq)	Target torque	RWm0B	2D12	Control output 2	Status DO 2
RWwn0C		Command speed	Barela colonia	RWm0C	2D13	Control output 3	Status DO 3
RWwn0D	6081	(pp)	Profile velocity	RWm0D	2A42	Alarm No.	Current alarm 2
RWwn0E RWwn0F	6083	Acceleration time constant (pp, pv)	Profile acceleration	RWm0E	60B9	Touch probe function status	Touch probe status
RWwn10	6084	Deceleration time	Profile deceleration	RWm0F	60BA	Touch probe 1 Position latched at	Touch probe pos1
RWwn11	6084	constant (pp, pv)	Prome dedeletation	RWm10		the rising edge	pos value
RWwn12	6087	Amount of torque command change	Torque slope	RWm11	60BB	Touch probe 1 Position latched at	Touch probe pos1
RWwn13	0001	(per second) (tq)	Torque alope	RWm12	0000	the falling edge	neg value
RWwn14	60E0	Torque limit value	Positive torque	RWm13	2C12	Input device status 1	External Input signal display1
		(forward)	limit value	RWm14			
RWwn15	60E1	Torque limit value	Negative torque	RWm15			
		(reverse)	limit value	RWm16			
RWwn16				RWm17			
RWwn17	60B8	Touch probe	Touch probe	RWm18			
		function setting	function	RWm19			
RWwn18	60F2	Positioning operation setting	Positioning option code	RWm1A RWm1B			
RWwn19	2D05		Control DI 5	RWm1C	_		
RWwn19	2005	Control Input 5	Conduitors	RWm1D			
RWwn1B				RWm1E	_		
RWwn1C							
RWwn1D				RWm1F			
RWwn1E							
RWwn1E RWwn1F							
RWWIIF	/						

A seguir veremos alguns exemplos de como utilizar esses registradores:

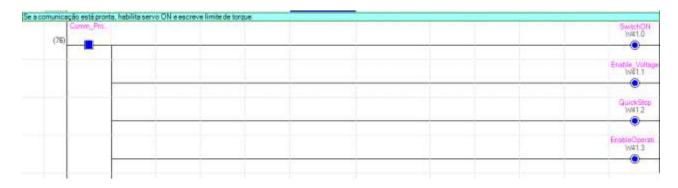



1. Habilitar comunicação

Antes de fazer qualquer tipo de comando é necessário habilitar a comunicação cíclica do CC-Link, para isso é necessário acionar o RY03F.

No exemplo, o RY começa no B40, RY00 = B40, então o RY3F = B40 + 3F (somar em hexa) = B7F, logo tenho que deixar esse bit sempre ligado para que a comunicação aconteça:

Com isso feito posso verificar meu sinal de entrada RX, se essa habilitação foi feita com sucesso, o bit que monitora isso é o RX3F, usando a mesma lógica, meu RX começa no B00, logo a minha memória será o B3F:



2. Ligar o Servo ON

Antes de executar qualquer tipo de movimento, é necessário executar o Servo ON, que habilita o servo e deixar o motor com torque, pronto executar movimentos. Para isso é necessário ligar alguns Bits da Control Word que é a RWw01, no nosso caso seria a W41. Cada bit dessa word tem uma função:

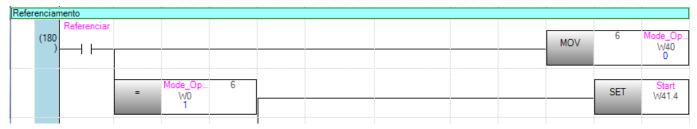
	sa word tem ama rangao.				
ſ	6040	0	Control command (Controlword)		
ı			Set control commands to control the servo		
ı			amplifier.		
ı			Bit 0: switch on		
ı			Bit 1: enable voltage		
ı			Bit 2: quick stop		
ı			Bit 3: enable operation		
ı			Bit 4 to Bit 6: operation mode specific		
ı			Bit 7: fault reset		
ı			Bit 8: halt		
ı			Bit 9: operation mode specific		
ı			Bit 10 to Bit 14: reserved		
l			Bit 15: operation mode specific		

Para Habilitar o servo ON é necessário ligar os 4 primeiros bits:

Outra coisa MUITO importante para ser fazer nesse momento, é colocar limites de torque no servo, pois as memorias vem zeradas, logo o servo fica sem torque, mesmo habilitado. As memórias de limite de torque são RWw14 e RWw15, logo W54 e W55:

3. Referenciamento

Normalmente antes de fazer posicionamento com o servo, é definido o seu ponto zero, também conhecido como home.


O tipo de home que o servo vai fazer pode ser escolhido pelos parâmetros, no **DAP-SV05(A)_PAR_JEC_ETHERNET**, ensina como escolher o tipo de home.

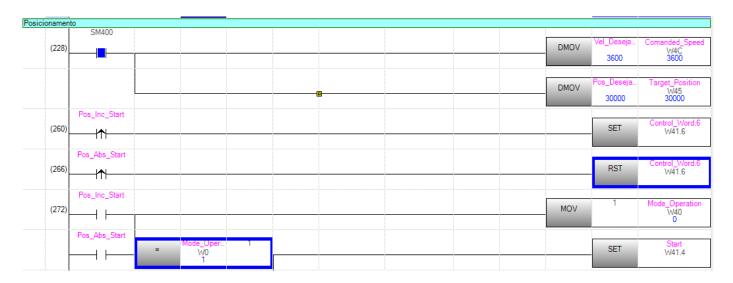
Para executar essa tarefa vamos necessitar do RWw0, RWw1, que são os W40 e W41 respectivamente

RWw0:

		•
6060	0	Control mode (Modes of operation)
		Set the control mode.
		0: No mode assigned
		1: Profile position mode (pp)
		3: Profile velocity mode (pv)
		4: Profile torque mode (tq)
		6: Homing mode (hm)
		-20: Position control mode
		-21: Speed control mode
		-22: Torque control mode

Portanto, precisamos enviar o valor 6 para o W40, e acionar Start na ControlWord, que seria W41.4

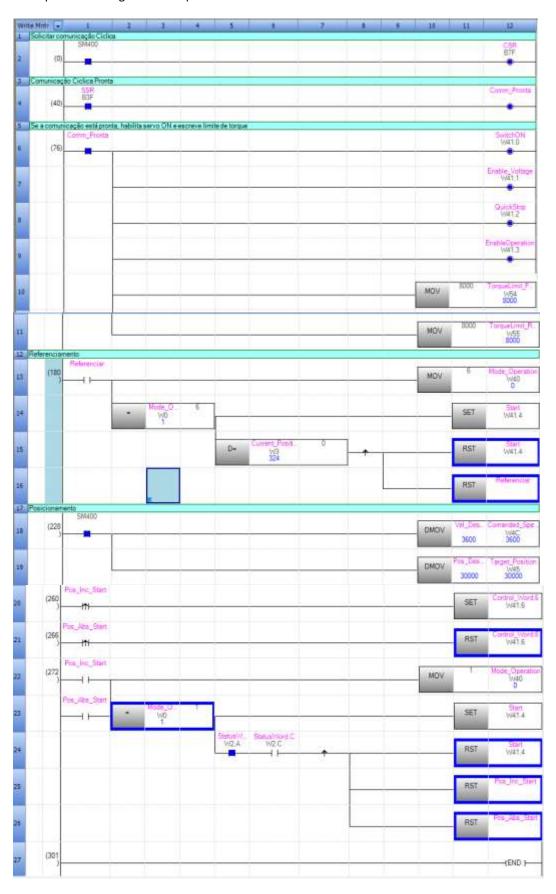
No Exemplo acima foi utilizado a W0 em uma comparação, para verificar se o Mode of Operation realmente foi alterado para 6 (que é o valor para executar o home)



4. Posicionamento

Para executar o posicionamento devemos configurar uma serie de parâmetros:

- Tipo de Posicionamento (incremental ou absoluto)(W41.6)
- Posição de destino (W45)
- Velocidade (W4C)
- Mode Operation (W40)
- Start (W41.4)


As unidades de deslocamento estão em unidades de posição configuradas na engrenagem eletrônica do servo, consulte o **DAP-SV05(A)_PAR_JEC_ETHERNET** para mais detalhes, caso nada tenha sido configurado, a unidade estará em pulsos do encoder do servo comandado. Já a velocidade, a unidade é 0.01 rpm.

5. Apendice – Programa Exemplo

	Label Name	Data Type	Class	Assign (Device/Label)	Initial Value	Constant	Comment
1	CSR	Bd	VAR_GLOBAL	• B7F			
2	SSR	Bit	_ VAR_GLOBAL	• 83F			
3	Mode_Operation	Word [Unsigned]/Bit String [16-bit]	_ VAR_GLOBAL	▼ W40			6060
4	Control_Word	Word [Unsigned]/Bit String [16-bit]	VAR_GLOBAL	▼ W41			6040
5	Target_Position	Double Word [Signed]	VAR_GLOBAL	₩ W45			607A
6	Acc	Double Word [Signed]	VAR_GLOBAL	• W4E			6083
7	Decc	Double Word [Signed]	VAR_GLOBAL	→ W50			6084
8	Comanded_Speed	Double Word [Signed]	VAR_GLOBAL	→ W4C			6081
9	TorqueLimit_FWD	Word [Signed]	VAR_GLOBAL	₩ W64			
10	TorqueLimit_REV	Word [Signed]	VAR_GLOBAL	 ₩56 			
11	Reset_Alarm	Bit	VAR_GLOBAL	- W41.7			
12	Start	Bit	VAR_GLOBAL	→ W43.4			
13	SwitchON	Bit	_ VAR_GLOBAL	▼ W41.0			
14	Enable_Voltage	Bit	VAR_GLOBAL	▼ W41.1			
15	QuickStop	Bit	VAR_GLOBAL	▼ W412			
16	EnableOperation	Bit	VAR_GLOBAL	• W41.3			
17	Current Position	Double Word [Signed]	VAR_GLOBAL	▼ W3			
18	Mode_Operation_Display	Word [Unsigned]/Bit String [16-bit]	VAR_GLOBAL	→ W0			
19	StatusWord	Word [Unsigned]/Bit String [16-bit]	VAR_GLOBAL	• W2			