

Function Block de comunicação SLMP para CPU FX5

Rev. A

Revisões

Data da Revisão	Nome do Arquivo	Revisão
Maio/2018	DAP-iQF-01_FB FX5 SLMP	Primeira edição

1. OBJETIVO

O objetivo desse documento é explicar como configurar e utilizar os *Function Blocks* de comunicação SLMP entre uma CPU FX5 com qualquer outro modelo de CPU Mitsubishi que utilize o protocolo SLMP (MC Protocol Frame 3E) via porta Ethernet.

2. CONCEITO

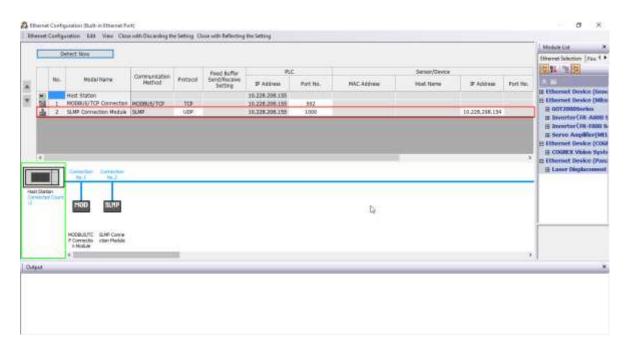
O protocolo SLMP está presente em quase todas as séries de CPU da Mitsubishi, o que pode é um facilitador de troca de informações entre CPU's. Com o uso dos *function blocks* que serão apresentados aqui é possível trocar dados entre duas CPU's Mitsubishi, com baixa parametrização.

Aqui será explicado como enviar (escrever – write) e receber (ler – read) dados de um registrador entre duas CPU's da família FX5.

3. HARDWARE/SOFTWARE

- 1x PC com SO Windows XP, 7 ou 8 com o software GX Works3 instalado;
- 2x CLP FX5UCPU

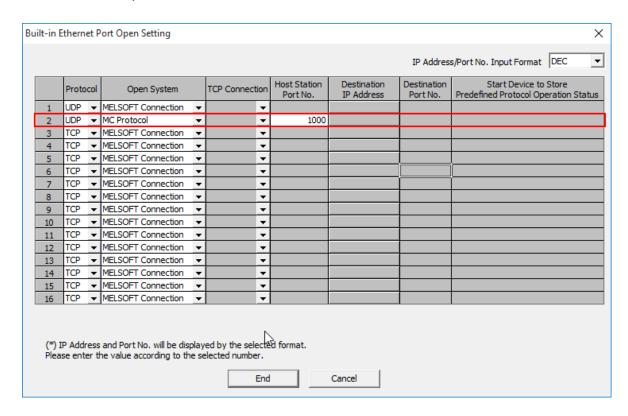
4. PROCEDIMENTO

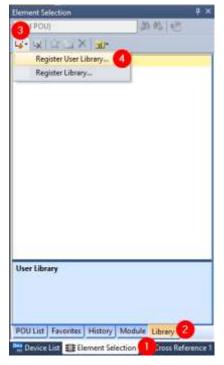

4.1. Configuração da CPU que recebe o comando SLMP ("Escravo")

Nas configurações de porta ethernet há apenas a necessidade de configurar uma porta Ethernet com as seguintes configurações:

Protocol: UDP;Port No: 1000;

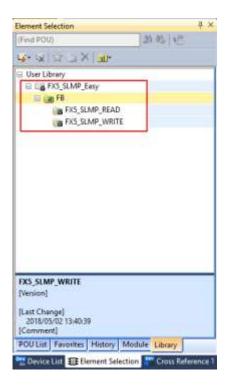
• IP Address: IP de quem irá enviar o comando;

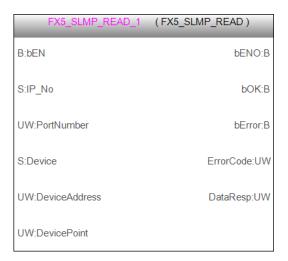

4.1.1. Série iQ-F


4.1.2. Série Q

4.2. Instalando Biblioteca no GX Works3

SUGESTÃO: Mova o arquivo "FX5_SLMP_Easy.usl" para dentro da pasta C:\Program Files (x86)\MELSOFT\GPPW3, para não perder as configurações futuramente.


Dentro do Software G Works3, crie um projeto novo para a CPU FX5. No caminho indicado pela imagem abaixo, selecione o arquivo "FX5_SLMP_Easy.usl" para importar a biblioteca de function block para dentro do projeto.


Após fazer a inserção da biblioteca nessa mesma tela você terá a seguinte visualização.

Ao clicar e arrastar o ícone FX5_SLMP_READ ou FX5_SLMP_WRITE para dentro da área de programação em ladder, irá ser inserido dentro do programa uma instancia destes *function block*.

4.3. Configurando bloco Read

Se inserir uma instância desse function block FX5_SLMP_READ você terá na tela a seguinte imagem para configurar.

Dados de Entrada:

<u>Dado</u>	<u>Descrição</u>	<u>Exemplo</u>
B:bEN	Bit que inicializa o FB.	M0
S:IP_No	String com o endereço de IP alvo para ler os dados.	'010.228.208.155'
	IMPORTANTE escrever todos os 4 octetos com 3 caracteres	

	(preencher com 0 se necessário)	
UW:PortNumber	Número da porta configurado no lado do alvo para usar	1000
	protocolo SLMP ou MC Protocol	
S:Device	Device que se deseja ler em formato string, nessa versão	'D'
	apenas é possível ler D, X e Y	
UW:DeviceAddress	Endereço inicial do qual será feito a leitura	0
UW:DevicePoint	Quantos registradores serão lidos em sequência, nessa versão	1
	é possível ler até 200 registros seguidos.	

Dados de Saída:

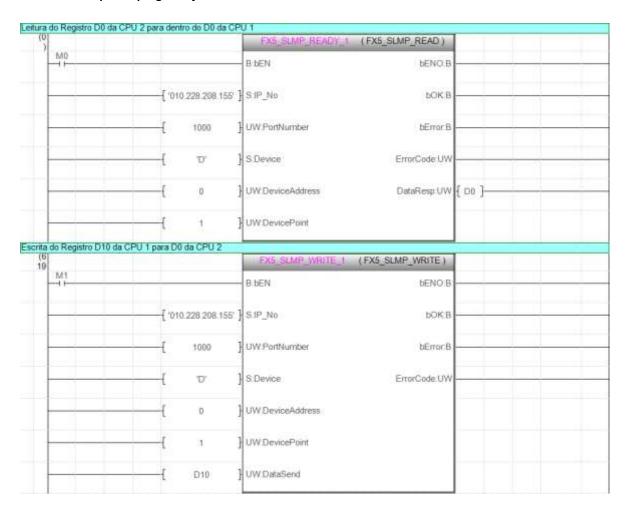
<u>Dado</u>	<u>Descrição</u>	<u>Exemplo</u>
bENO:B	Bit que sinaliza o funcionamento do FB.	
bOK:B	Bit que sinaliza a conclusão sem erro do FB.	
bError:B	Bit que sinaliza que houve uma falha na execução do FB.	
Errorcode:UW	Armazena o erro que ocorreu no FB	
DataResp :UW	Dado lido do alvo.	

4.4. Configurando bloco Write

Se inserir uma instância desse *function block* **FX5_SLMP_WRITE** você terá na tela a seguinte imagem para configurar.

Dados de Entrada:

<u>Dado</u>	<u>Descrição</u>	<u>Exemplo</u>
B:bEN	Bit que inicializa o FB.	M0
S:IP_No	String com o endereço de IP alvo para escrever os dados.	'010.228.208.155'
	IMPORTANTE escrever todos os 4 octetos com 3 caracteres	
	(preencher com 0 se necessário)	
UW:PortNumber	Número da porta configurado no lado do alvo para usar	1000
	protocolo SLMP ou MC Protocol	
S:Device	Device que se deseja escrever em formato string, nessa versão	'D'
	apenas é possível ler D, X e Y	
UW:DeviceAddress	Endereço inicial do qual será feito a escrita	0



UW:DevicePoint	Quantos registradores serão escritos em sequência, nessa	1
	versão é possível ler até 200 registros seguidos.	
UW:DataSend	Dados que serão enviados pelo comando de escrita.	D10

Dados de Saída:

<u>Dado</u>	<u>Descrição</u>	<u>Exemplo</u>
bENO:B	Bit que sinaliza o funcionamento do FB.	
bOK:B	Bit que sinaliza a conclusão sem erro do FB.	
bError:B	Bit que sinaliza que houve uma falha na execução do FB.	
Errorcode:UW	Armazena o erro que ocorreu no FB	

4.5. Exemplo de programação

